
AD-All7 b6 VIR61NIA POLYTECHNIC INST AND STATE UNIV BLACKSPUR6 ETC F/O 9/2
THE DMS MULTIPROCESS EXECUTION ENVIRONMENT. U)
APR 82 R W EHRICH NOOR1-81-K-0143

UNCLASSIFIED CSIE-82-6 NL

D

EEol

Lm!

IIII1 1.0-°
1111' ,__

1111"--- _I1 U___

MICROCOPYq RESOLUTION' TEST CHART

I

I C
0

I

* Virginia Polytechnic Institute
and State University

Computer Science
3 Industrial Engineering and Operations Research

BLACKSBURG, VIRGINIA 24061

8207 29 os

I V/
CSIE-82-6 April 1982

I
I

ITHE DMS MULTIPROCESS EXECUTION

ENVIRONMENT

Roger W. Ehrich

[TECHNICAL REPORT -A .. "

Prepared for
Engineering Psychology Programs, Office of Naval Research

ONR Contract Number N00014-81-K-0143
Work Unit Number NR SRO-101

E
Approved for Public Release; Distribution Unlimited

Reproduction in whole or in part is permitted
for any purpose of the United States Government

0

SECURITY CLASSIFICATION OF TIS PAGE (Mn De UmBa.

I. EPOR T alff VOUITTO PGEw -CINM S UI111N'lCTLG

CSIE-82-6 A Dr It I______All______
4. TITLE (an.dSuMef..) s. TVP9 oF MEORT & PERIOD COVEo

THE DMS MULTIPROCESS EXECUTION ENVIRONMENT Technical Report
s. PsUrnmOe CAM. T [Om1r NUNSER

7., AUTWOR~o) U . COTRACT OR ORANT NUlUER'au

IRoger W. Ehrich
N00014-81-K-0143

9. PERoMING ORGANS,ATION NAME AND AOO",SS ' . AmhtL, .,.tlp TASK '.
Computer Science 61153N42
Virginia Polytechnic Institute & State University RR0420901
Blacksburg, VA 24061 NR SRO-101

,,. CONTROLLING oFFICE NAME AND ADDRESS It. REPORT OATS

Office of Naval Research, Code 442 .i 1982
800 North Quincy Street Is. NUMBEROF PAGES

Arlin ton n VA 22217 "4
14. MONITOWING AGENCY NAME & ADDRIESS(II d b e.i crnm elMjb 00/") is. MCURITY CLASS. (.1 adwe mt)

Unclassified
IS&. Al&lbSICATON DOWNGRAfING

14. OISTRIBUTION STATEMENT (of1 eNpPl)

L Approved for public release; distribution unlimited

17. DISTRIgUTION STATEMENT (of the edb&,el.* GiRfeEO bi We& 20, It 4fbubwant NeeO

LI 50. SUPPLEMENTARY NOTES

Li 19. KEY WORDS (Caili,. en MW" 8# 1. . en.a OFi 114 IVif ~p 110e)

DNS, dialogue management system, multiprocessing concurrency, hvusd-, .,ter,
dialog independence, rendezvous, synchronization

U u A... .IFIS ~ i . .
US. A@ ACT (Ca0l4u. On 0evere Old& N ue60MeU amd gi0 IF 6buS IIIIII

In this report a language-independent multiprocessing environment for
managing human-computer dialogue is described. One of the main reasons foy
such an enviroment is that it helps to enforce the separation of modules
that deal with human-computer dialogue from those that deal with computation
while at the sie time providing for concurrencies that would not othrwise
be possIble. Imbedded in the onvirmment are debugging aide that facilitate
softvare preparation and a priority mechanism for sequencing Interproces
caunications.00 ,1. JAN NrO -"- m-

S/H 112.- ,*o U%,m N'k 4.,,,6601 ,;m,

ACKNOWLEDGEMENTS

This research was supported by the Office of Naval Research

and ONR Contract Number N00014-81-0143, and Work Unit Number NR

3 SRO-101. The effort was supported by the Engineering Psychology

Programs, Office of Naval Research, under the technical direction

of Dr. John J. O'Hare.

0

AO.O531Oz' 01

DistrbutlT/
DTIG A-£Yliki1tY CodeS(JA vII and/or

special

I iii

I-

I
TABLE OF CONTENTS

Acknowledgements ii

1. Introduction 1

2. Functional Decomposition of Programs 2

3. Interprocess Communication 9

E 4. Concurrency 13

5. Input and Output 15

6. The DNS User Procedures 17

6.1 Accept 17
6.2 Collect 17
6.3 Create-Process 17
6.4 DeleteProcess 18
6.5 End Request 18
6.6 Input .. 20
6.7 Meter .. 19
6.8 Open Meter 20
6.9 Output 20
6.10 Receive 20S6.11I Request 21
6.12 Send ... 21
6.13 Status Report 22
6.14 Terminate 22
6.15 Trace ..23

7. Using DMS .. 24

0 7.1 A FORTRAN Example 24
7.2 A VAX PASCAL Example 27
7.3 Another FORTRAN Example 29
7.4 Debugging Concurrent Programs 30
7.5 Running DMS on the VAX 30
7.6 Interacting with DMS 32

References ... 34

I
i
I1 iii

IIft 1. INTRODUCTION

A Dialogue Management System (DMS) is a special system for

creating, modifying, and testing human-computer interfaces. In

general, DMS consists of three aspects -- an execution

environment for dialogue and application software, a set of tools

F for creating software and human-computer interfaces, and a

methodology for creating software using the tools and the

execution environment. This report is a technical description of

the DMS execution environment, and it includes the details of the

FORTRAN procedures by means of which software is created to run

under the DNS system. These procedures, in addition to the

constructs of a standard programming language such as PASCAL or

FORTRAN, are used to implement human-computer interfaces at an

intermediate implementation level. Later, the DMS tools will

provide high-level techniques for producing such interfaces

without requiring the authors of those interfaces to be aware of

the details at the intermediate level.

The system described here is based upon the belief of the

DNS group at Virginia Tech that there should be logical and

physical separation between software that implements the

dialogues between human and computer and the software that

achieves the computational goals of a computing system. The

former are referred to as dialogue programs, and the latter are

Scalled computational programs.

[1 1

rLU. _-- -

IE

1 2. FUNCTIONAL DECOMPOSITION OF PROGRAMS

DMS was motivated by a desire to improve the design and

management of human-computer interfaces by providing a special

[environment for software production activities. Hartson, Ehrich,

and Roach [11 point out that one of the fundamental reasons for

[the existence of so many poorly -designed and inflexible human-

[computer interfaces is that current software design methodology

encourages the production of program megaliths in which the

[software components are strongly coupled and interwoven. In

particular, the failure to differentiate between software that

implements the human-computer interface and software that

implements the computational tasks has led to many of the

F. problems. One of those problems is the failure to recognize that

the design team having the competence to produce computational

software frequently does not have the same competence in human

factors and communication. A corollary is that many design teams

do not fully grasp the difference. A second problem is that the

F; software design tools that exist for application software design

[are not likely to be the same tools that are needed for the

design of the human-computer interface. Yet a third consequence

of monolithic software design is an inflexibility that may

require considerable redesign when relatively small details of

0either application or interface software need to be changed.
Depending upon the nature of the software task, there may be

a very close relationship between the design of the human-

2

I_

!
computer interface and the design of the computational software.

Thus, the dialogue author and the computational programmer may

need to work jointly on significant portions of the design

specifications. We can clearly distinguish two extreme types of

Isoftware, called computation dominant and dialogue dominant

software. In the case of computation dominance, the control

logic is entirely contained in the logic of the computational

Icomponent so that whatever dialogue logic exists is distinct and
easily decomposed from the logic of the computational component.

Dialogue dominance is just the opposite. In this case the

control logic is entirely contained in the dialogue, and again

Ii the computation and dialogue components are easily decomposed.

Most text editors would resemble the dialogue dominant case.

Most other software is somewhere in between, and its design

requires the cooperation of the dialogue author and the

programmer of the computational component. What is important is

L not the classification of a software task but the recognition of

[the distinct roles of the dialogue author and the programmer in

the software production process. If one is willing to

[acknowledge these distinct roles, then it does not require much

further argument to reach the conclusion that the objects

E designed by these authors ought also to be locally, logically

distinct despite the global interrelationships that bind them

together. It is the function of the DMS execution environment to

provide the mechanism by means of which this logical separation

can be implemented.

I3

!

I
There are several ways to achieve separation of

computational modules from dialogue modules. For example, a

[program might simply make calls to procedures that contain

dialogue or computational code but not both together. Another

[alternative is to structure programs so that dialogue and

[computational components are distinct despite their presence in

the same code body. Yet another solution makes use of

[multiprocessing to enforce separation and to make possible

dialogue and computational concurrencies that would not otherwise

I. be possible. This last alternative is the one that has been

selected.

One of the most powerful concepts for implementing locally

F, independent but globally interrelated software units is the

process. A process provides the environment, services, and

resources necessary for running a program, which, in the Digital

Equipment Corporation (DEC) tradition, will be called an image to

distinguish the bound executable module from source or object

JI code. A process exists solely for the purpose of executing an

image, which is both a logically and physically distinct software

entity, much like that which a dialogue author or programmer

would produce. The physical realization of the global links

between dialogue or computational software modules is the

IIinterprocess communication facility, and it is partly the role of
D14S to provide well engineered interprocess communication

£ constructs within the context of the host operating system.

-| 4I|

The principal consequence of DNS methodology is that a task

that might be implemented as a single program under conventional

software methodology will normally be implemented as a set of

independent communicating programs, each of which executes in a

separate process. Such a set of communicating programs will be

[referred to as a program complex. There are numerous benefits

from this type of program decomposition. Module interactions are

[minimized, and that facilitates the design of the programs that

run under the various processes. Concurrencies among modules

[become a reality, and since dialogue and computational code may

[. well require different implementation tools, more specialized

tools can be applied. The way in which a task is decomposed

[depends upon the control structures within the algorithm that

carries out the task. For example, dialogue tasks are separated

[7from computation tasks, and the interrelationships between them

depends upon whether the overall task is dialogue or computation

dominant. Thus, modifications to a software unit may be made by

[modifying any of the programs of the complex individually or by

altering the communication among the programs.

In order to account for the different possible relationships

[among the programs of a complex it is necessary to distinguish

special types of programs called executors and coprograms. These

are distinguished on the basis of their internal structure, and

they may implement either dialogue or computation, depending upon

whether or not they are permitted to communicate with a user.

Thus there may be dialogue programs, executors, and coprograms,

I
Ii

and computation programs, executors, and coprograms. Executors

have a particularly important structure; they are collections of

modules that do not call one another and have no shared global

environment. The module interrelationships are defined by the

programs that invoke them. Few programs are organized as pure

executors, but they contain an asymptotic structure that is

important because of the independence of the component modules.

Programs and executors are used in situations where there is

clear computation or dialogue dominance. The dominant task i-s

implemented as a program that makes specific requests of the

i lexecutor, which achieves logically distinct subtasks and returns

information to the requesting program. While specific examples

Ii are shown later, the idea is that the executor is subordinate to

the requesting program, and it exists to satisfy the program's

PROGRAM EXECUTOR

ACCEPT

I" REQUEST
SEND RECEIVE

. SEND I RECEIVE

COLLECT
RECEIVE - SEND
RECEIVE - SEND

END _REQUEST

Figure 1 - Program-Executor Relationship

[6

uI

I
I requests. The protocol that has been implemented looks roughly

as shown in Figure 1. REQUESTs and ACCEPTs, and RECEIVEs and

SENDs are complementary. The program makes a request of an

executor which is acknowledged when the executor reaches its

Iaccept state. Then the program sends data to the executor and,

when it desires the executor's response, collects the responses

by issuing receives. The executor selects the appropriate

V service (e.g. dialogue module) specified by the request, issues

matching receives and sends to obtain and return information, and

L performs any necessary input, output, or computation. Either

- side of the diagram in Figure 1 might contain computational or
J.

F

REQUEST -~ACCEPT

SEND RECEIVE
END REQUEST

ACCEPT go REQUEST
RECEIVE o' SEND

END-REQUEST

Figure 2 - Coprogram Relationship

L dialogue code.

One possible organization of the coprogram relationship is

. [illustrated in Figure 2. This relationship applies when there is

no clear computation or dialogue dominance. In this case

1. information is simply shuttled back and forth between the

[coprograms which execute in a quasi-synchronous manner. Of

[7

I
[course, any program, coprogram, or executor may issue requests to

any number of programs. Each program is identified in the

[
j - ACCEPT

- RECE I VE

REQUEST
SEND
SEND -W

COLLECT
RECEIVE -
RECEIVE

END-REQUEST

SEND

Figure 3 - Third-Party Request

request by the image name.

One other structure called a third-party request is

possible. This situation, shown in Figure 3, occurs when an

executor inserts a request to another executor in the middle of

its service to a program. Such a request may be made only after

the executor completes its RECEIVE sequence and before beginning

its SEND sequence. It is the author's responsibility to avoid

circular 3rd party requests that may lead to a deadlock. In the

same spirit it is the authors' responsibility to agree upon

request names, to ensure that RECEIVEs and SENDs are properly

paired, and to ensure that the correct amount of data is

transferred.

8

I
3. INTERPROCESS COMMUNICATION

DMS has been implemented using a variation of the rendezvous

concept [21 in which two processes must synchronize before an

interprocess dialogue can be initiated. While there are some

requirements that are better served by asynchronous

communication, it was felt that synchronous constructs would be

easier to implement and much less confusing to nonspecialists in

concurrent programming. In this implementation, an image called

ENTRY is run under the user's login process. ENTRY is the

central executive of DMS, and all DMS processes are subprocesses

of the process running ENTRY. Included in ENTRY's

1. responibilities are:

1) Conducting the default dialogue for initiating
the execution of a complex.

2) Maintaining the image name, process
identification code, mailbox name, and status
for each DMS process.

3) Supervising process and mailbox creation.

1. 4) Supervising mailbox deallocation and process
shutdown for both normal and abnormal

.|-termination.
5) Servicing queries about processes that permit

images to locate one another and establishj Icommunications.

Since this is a VAX/VMS implementation, the interprocess

communication mechanism is called a mailbox, which is a portion

[of non-paged physical memory. Mailboxes are treated as ordinary

input/output devices, and requests are queued if they cannot be

9[

I Iserviced immediately. Each process has one request mailbox whose

name is based upon its process identification code, which is a

unique number assigned by the operating system to the process

when it is created. An image never writes to its own mailbox,

I which is treated as read only by its process. In each process

except the one running ENTRY, mailboxes are serviced by software

interrupts called asynchronous system traps (AST's). Thus

[mailboxes are read almost instantaneously with one exception.

When data (as opposed to control information) are being

Itransferred, since each image has only limited local buffer

space, AST's are disabled in the receiving process until the

received data can be copied to its final destination to free the

receive buffer.

Two processes are required to synchronize at the beginning

of each interprocess dialogue. If process A requests a dialogue

Ii with process B, A sends B a request and hibernates until B gives

A its attention. Then A and B can communicate freely, but with

I. two constraints. In order to receive information from B, A must

issue a collection request to B at some point before information

is desired from B. This permits A to initiate concurrent

[dialogues with several processes and then order the processes

from which it desires responses. The second constraint is that

[if B makes a third party request to C, it may only do so when A
has finished transmitting data to B. Otherwise B would not be

able to distinguish data received from A from data received from

C. With the exception of the preceding caution, A and B may

freely exchange data in either direction as long an they choose.

[10

IJ
I]

As an executor receives requests, they are queued internally

and then serviced according to their priority. Once a request is

serviced, the rendezvous is in effect until both processes decide

to end the dialogue. With such an implementation the

organization of an executor is quite simple, since it queues only

requests and carries out only one interprocess dialogue at a

[time.

To complete the description of the DNS execution

environment, a brief account of the communications that take

I. place internally is given next. Suppose that image A is a

computational program and that image B is a dialogue executor.

I. When a user runs ENTRY, the user gives A's name in the default

dialogue, and its process is created. When A executes a REQUEST,

A creates a mailbox and informs ENTRY that it has done so. Since

A has never communicated with B before, A asks ENTRY for the name

of B's mailbox. ENTRY, however, has no knowledge of B either, so

I it creates a process that runs B. As soon as B executes an

ACCEPT, B creates a mailbox and informs ENTRY. Next, ENTRY

checks whether any image needed B's mailbox name, and it

11 immediately sends the information to A, whose process is

hibernating. A wakes up and now requests service from B and

[waits for acknowledgement, which comes immediately, since B's

process is hibernating. Then data exchanges follow. If A later

[requests service from B again, ENTRY is not queried, since A

Eremembers B's mailbox name.
1 11

I 'here are two ways in which processes are removed. If the

DELETE_PROCESS service is called, ENTRY broadcasts a notice to

II all processes to cancel records of the deleted process, and then

it deletes the process. If any image terminates normally or by

accident, ENTRY learns of the event by receiving a message in a

special mailbox called a termination mailbox. When such a

message is received, ENTRY deletes all processes, sends any error

message to the standard error device, and returns to the default

dialogue so that the user can execute another complex.

II.
Hl

H' .. .1... . . .2n. II] i l . . . l [

I
4. CONCURRENCY

Up to now the merits of the multiprocess environment for DNS

have been argued on the basis of the functional decomposition of

programming tasks. However, there is far more involved. There

is no difference in the theory if the individual processes were

separate hardware processors. Ail of them may function

concurrently with only weak constraints imposed in part to make

the programmer's job easier. Most restrictive is the constraint

[that a process issuing a REQUEST will hibernate until that

request is acknowledged. However, assuming that the required

[executors or co-programs are free, a program may initiate

multiple dialogues that execute concurrently with one another and

[concurrently with its own code.
LThere exist several programming environments that provide

[multiple processes and interprocess communication facilities,

among them ADA (21, concurrent PASCAL [3], and UNIX [41. These

[differ from one another in their constructs and implementation,
and since their definition is standard, one does not have the

[freedom to adapt them to the specific needs of dialogue

management. One need that has been addressed, for example, is

the notorious complexity of debugging asynchronous concurrent

programs. Another need is satisfied by the provision of a built-

in mechanism for executing queued requests on the basis of their

priority. DMS is largely language independent and has an

architecture that can easily be modified to meet the needs that

1
1 13

I

I
arise as we learn how to provide better and better tools for

constructing human-computer interfaces.

E,1

E

E

EIi

I

1 14

I

1
5. INPUT AND OUTPUT

The handling of I/O devices is one of the most complicated

parts of implementing human-computer dialogues. In order to be

[able to provide intelligent input/output devices and software

capable of interacting with many concurrent users or

[computational processes, each device is controlled by a separate
program running in a distinct DNS process and served by the same

interprocess communication facility. For each physical device,

[the DMS system is supplied with a set of high-level subroutines

by means of which input/output requests are made to that device.

Users of DMS are not aware that separate processes are created to

serve input/output requests.

Every device handler is accessed through two basic

subroutines, INPUT and OUTPUT, in addition to special subroutines

designed to serve special device features and special device

software capabilities. INPUT and OUTPUT are used to transmit

ASCII data to and from a device, and if these subroutines are

used, formatting must be done by dialogue processes. As DNS

evolves, INPUT and OUTPUT will be supplemented by higher-level

subroutines that support intelligent formatting directly in the

1. device process. Different physical device types are controlled

[by different device programs. However, if two different device

types have similar capabilities, the same subroutines are

[7 designed to support them. This rather neatly solves the problem

of device dependence in input and output.

Iis

I
One important aspect of each device process is the queueing

of I/0 requests from multiple processes. There is only a limited

f priority system for I/0 requests. All requests are served on a

first-come, first-served basis except for output requests with

the FLASH mode specifier. Such requests are served first. In

[order to prevent undesired shifts of focus in a device dialogue,

each communication with the device may use a KEEP mode specifier

which blocks access to the device to all other processes. The

KEEP is in effect only for the next communication unless the next

L communication also specifies KEEP. Even if FLASH is specified,

if another process has reserved a device by specifying KEEP, the

FLASH will be queued until the device becomes free.

Ii

I.

E

if 16

I

6. THE DMS USER PROCEDURES

The fifteen procedures described here pass requests by

character strings specified by descriptors and data by reference.

[Considerable effort has been made to simplify these services by

eliminating arguments without sacrificing functionality and

flexibility.

6.1 ACCEPT (requestname)

ACCEPT is the procedure that is executed in a dialogue or

I" computation executor or co-program in order to obtain the name of

a request for service from another program in the complex.

Request-name is a character string up to 31 characters in length.

Each call to ACCEPT in one process is logically paired with a

corresponding REQUEST in the communicating process. The process

containing ACCEPT waits until a service request has been received

before returning. If multiple requests have been queued, the one

with highest priority is acknowledged.

6.2 COLLECT (image name)

COLLECT is called by a program requesting service of an

executor to trigger the return of dialogue or computational

results from the executor. Image-name is the name of the

executor and can be up to 63 characters in length.

6.3 CREATEPROCESS (imagename)

This subroutine can be called from any process to explicitly

create a subprocess of the ENTRY process. Image_name is the name

S17
[

I
of the image to run under the new process, and its name must have

an "exe" filetype. Image_name may be up to 63 characters in

[length. There is an implicit call to CREATEPROCESS whenever a

call to REQUEST is made specifying an image that is not currently

Irunning under some process.
fi 6.4 DELETEPROCESS (image_name)

SetThis subroutine explicitly deletes the subprocess of the

entry process that is running the image specified by image_name.

Care must be taken not to delete a process that is engaged in an

interprocess dialogue or an I/O request, since other processes

participating in such a dialogue will not be able to proceed.

Image name may be up to 63 characters in length, and the image

must have an "exe" filetype.

6.5 END_REQUEST

This should always be used as the last statement of a

dialogue request. In other words, each call to REQUEST should

eventually be followed by a call to ENDREQUEST.

6.6 INPUT (device,string,nbytes,mode)

INPUT requests input data from 'device', which is specified

by a 2-character string such as 'tt' for the user's login

terminal. Nbytes is a 4-byte integer variable in the range 0 to

I 512 that specifies the buffer size, and it is set to the number

of bytes returned, excluding line terminator, if any. Mode is a

character string that determines how the input is to be done. A

[mode specifier can appear anywhere in the mode string, and it can

1 1

I

I
have upper or lower case. However, mode cannot be a zero-length

string. Valid mode specifiers are:

ECHO - Echo the input characters
KEEP - Retain device control after transmission
EDIT - Edit input as follows:

CR and LF line terminatorsLU (NAK) cancel line
CR (DC2) refresh input line
DEL character delete

PURGE - Clear the typeahead buffer before input
CR - Carriage return after input
LF - Line feed after input

" RESTORE - After input, erase line and restore cursor
position

BELL - Ring the bell before accepting input

Example:

call INPUT ('tt',string,nbytes,'echo+keep')

6.7 METER (id,comment,pl,p2,p3,p4,p5)

A call to METER causes a record to be written to the

metering file specified by the OPENMETER subroutine. id and pl

- p5 are optional 2-byte integers, and comment is a character

string of 1 to 35 characters. Each re!ord has the following

format:

2 cols id i2
11 cole elapsed seconds f1l.2
2 cola sp
35 cols comments
5 cols pl i5
6 cols p2 i6
6 cols p3 i6
6 cols p4 i6
6 cols p5 i6
1 col NULL

!, [19

[I6.8 OPENMETER (filename)

This subroutine prepares a file to accept 80-character

[metering records produced by calls to METER. The metering file

7 must be created prior to a call to OPENMETER. A record is

simply appended to this file each time METER is called.

1. 6.9 OUTPUT (device, string, nbytes,mode)

OUTPUT sends data to 'device', which is specified by a

2-character string such as 'tt' for the user's login terminal.

Nbytes is a 4-byte integer in the range 0 to 512 that specifies

the number of bytes to be transmitted. Mode is a character

string that describes how the output operation is to be

performed. A mode specifier can appear anywhere in the mode

string, and it can have upper or lower case. However, it cannot

be a zero-length string.

KEEP - Retain device control after transmission
CR - Carriage return after transmission
LF - Line feed after transmission
FLASH - Send a high priority message

Example:

Call OUTPUT ('tt',string,100,'crlf and flash')

6.10 RECEIVE (data reference,nbytes)

RECEIVE implements the transfer of data from another process

I into the process from which it is called, and the amount of data

transmitted is determined by the sending process. Datareference

is the address of a contiguous byte array that is to receive the

transmitted data, and nbytes is a 4-byte integer that returns the

I" 20

number of bytes transmitted. Each call to RECEIVE in one process

is logically paired with a corresponding SEND in the

communicating process. RECEIVE waits until data have been

received before returning.

6.11 REQUEST (image_name, requestname,priority)

REQUEST is called by a program that wishes to invoke

dialogue or computation by an executor. Imagename is the name

of the image from which services are requested. It must have an

"exe" filetype and may be up to 63 characters in length.

Requestname is a character string that names the request to be

serviced by the executor, and it may be up to 31 characters in

length. Each call to REQUEST in one process is logically paired

with a corresponding ACCEPT in the communicating process.

REQUEST will not return until the named image is running, its

mailbox has been established, and it has acknowledged the

request. If the named image is not running under any process, an

implicit call to CREATEPROCESS is made. Priority is a 4-byte

integer that is used by ACCEPT to determine which request among

those pending should be served next. Requests with larger

priority values are served first.

6.12 SEND (datareference,nbytes)

SEND transmits "nbytes" bytes of contiguous data from a data

structure whose address is given by datareference, where nbytes

is a 4-byte integer. Each call to SEND in one process is

logically paired with a RECEIVE in the communicating process.

21

5 SEND returns immediately if it is called after a REQUEST. When

called after an ACCEPT, SEND returns immediately if the sequence

of SENDs has been enabled by another process by a call to

COLLECT. SEND should not be issued by a requesting process

unless RECEIVE is the next subroutine to be executed by the

I accepting process. Otherwise the accepting process will be

deadlocked.

6.13 STATUS REPORT

Any process running under DMS can request that the status of

all subprocesses with mailboxes be transmitted to the user's

login terminal. The status report specifies which of the DMS

.~ services ACCEPT, COLLECT, END REQUEST, RECEIVE, REQUEST, or SEND

is currently being executed or was most recently executed. Where

J applicable, the name of the communicating image and the requested

service is also returned. This subroutine is used for debugging

purposes in determining the execution state of DMS subprocesses,

and the same status report can be obtained from DMS

interactively.

6.14 TERMINATE (mode)

Terminate calls for termination of the program complex

-- currently running under DMS or causes the termination of DMS

[itself. Mode is a character string that determines the effect of

TERMINATE - 'complex' if the current complex is to be terminated

and 'dms' if DMS itself is to be terminated. Control of

execution never returns from TERMINATE. Terminate can also be

executed interactively through the DMS system.

[22

K

[6.15 TRACE (onoff)

Any process running under DMS can request an execution trace

of the DMS services ACCEPT, COLLECT, ENDREQUEST, RECEIVE,

Ii REQUEST, and SEND. When TRACE is called, the trace begins for

all processes that have a mailbox at the time the request is

I. issued. Onoff is a character string that turns trace mode on if

'ON' and off if 'OFF'. A trace is a time-sequential transcript

that shows the entry and exit from each of the above six DMS

subroutines and a record of each interprocess communication sent

to a process mailbox. This subroutine is used for debugging

purposes in determining the execution state of DMS subprocesses.

Trace can also be turned on or off from DNS interactively, and

all trace output is sent to the file, TRACE.DMS.

[I

I
1 2 3lI I I l ll ,

II
7. USING DMS

This section presents short examples of communicating

programs written in FORTRAN and PASCAL that demonstrate how the

I DMS multiprocess environment is to be used. Also, this section

contains specific notes about the VAX/VMS environment which hosts

I the DMS system.

j 7.1 A FORTRAN Example

c This program gets a number and doubles it.
c Let's assume that this program is called FDEMO.
c According to DMS methodology, this program may not
c communicate with a user.
c This program executes in a subprocess of the user's
c login process concurrently with FEXEC.

call REQUEST ('fexec','get number',O)
call COLLECT ('fexec')
call RECEIVE (n,nbytes)
call END REQUEST

m=2*n

call REQUEST ('fexec', 'print numbers' ,O)
call SEND (n,4)
call SEND (m,4)
call END-REQUEST

call REQUEST ('fexec','shutdown',O)
call END REQUEST

end

[
[

[24

I

c This is a dialogue executor that serves the requests
c from ThEMO and does all its input and output.
c Let's assume that this executor is called FZXEC.
c This program executes in a subprocess of the user's
c login process concurrently with FDEMO.

CHARACTER*31 requestname

10 call ACCEPT (request name)

if (request name .eq.' get number') then'ftype *, 'Enter an integer'
read *, n
call SEND (n,4)

end if

-. I if (request name.eq.'print numbers') then
call RECEIVE (i,nbytes)
call RECEIVE (j,nbytes)
type *, '2',i,' equals',j

end if

if (requestname.eq.'shutdown') call exit

go to 10

end

j Looking first at FDEMO, the first request is for an input

value to be used in a simple computation. Since FDEMO has

i. nothing to send the dialogue executor, it calls COLLECT and

obtains the value from FEXEC. Then, a request is made for FEXEC

to print the input and output values. Since they are not

[necessarily contiguous in storage, two calls are made to SEND,

each having 4 bytes since the default FORTRAN integer data type

[is INTEGER*4. Finally, the program complex is terminated by the

REQUEST for the shutdown service. Since the requests are

executed on a first-come, first-served basis, the shutdown

request which causes all programs in the complex to terminate

1 25

I_ |

I
will not be executed by FEXEC until it has finished printing out

the results for the user.

FEXEC begins with an ACCEPT statement, and once a

[request-name is obtained, the corresponding request is executed.

The only unusual service is shutdown, which causes a program

ji exit, which, in turn, causes the entry process to delete all

processes in the complex and return to the default dialogue.

The following examples are identical to the previous ones

except that both the application program and the dialogue

executor have been coded in VAX PASCAL. Otherwise, the previous

discussion applies also to these programs.

.21

is

Ii
0
0 2

0!

(7.2 A VAX PASCAL Example

program pdemo;
{ This program gets a number and doubles it.
According to DNS methodology, this program may not
communicate with a user.
This program executes in a subprocess of the user's
login process concurrently with PEXEC.)

type
executorname type = packed array [1..5] of char;
request_name type = packed array [1..131 of char;

vartmnpriority, length,nbytes: integer;
procedure REQUEST (Zstdescr u: executorname type;

%stdescr v: request nametype;
var w: integer); extern;

procedure COLLECT (%stdescr u: executor name type); extern;
procedure RECEIVE (var u: integer;

var v: integer); extern;
procedure END REQUEST; extern;
procedure SEND (var u: integer; var v: integer); extern;

begin
length: =4;
priority:=0;

REQUEST ('pexec','get number ',priority);
COLLECT ('pexec');
RECEIVE (nnbytes);
END-REQUEST;

m:=2*n;

REQUEST ('pexec', 'print numbers' ,priority);
SEND (n,length)-,
SEND (m,length);
ENDREQUEST;

REQUEST ('pexec', 'shutdown ',priority);
ENDREQUEST

end.

U 27

I

I

program pexec (input, output);
(This is a dialogue executor that serves the requests
from PDEMO and does all its input and output.

This program executes in a subprocess of the user's
Llogin process concurrently with PDEMO.)

type
requestnametype = packedarray 11..13) of char;

var
request name: request name type;
i,j,n,lenqthnbytes: integer;

procedure ACCEPT (Zstdescr u: request nametype); extern;
procedure SEND (var u: integer,var v: integer); extern;
procedure RECEIVE (var u: integer;

var v: integer); extern;
procedure SYS$EXIT; extern;

begin
length=4;

repeat
ACCEPT (request-name);
case request name [1) of

, I

begin
writeln ('Enter an integer');
readln (n);
SEND (n,length)

end;

begin
RECEIVE (inbytes);
RECEIVE (j,nbytes);
writeln ('2',i,' equals',j)

end;

'': SYSSEXIT

Ii end
until false

end.

I28

O 2

K One more example is given that demonstrates the use of the

DMS I/O system. In this example, a line of up to 25 characters

[is typed with echo to the user. When carriage return is struck,

the line is repeated on the user's terminal. If the first

[character is an uppercase 'S', DNS is terminated.

7.3 Another FORTRAN Example

c This program parrots the input typed on the user' s
c terminal. If 25 or more characters are typed or if
c CR is struck, the line typed is retyped.

CHARACTER*25 buffer

10 nbytes=25
call INPUT ('tt',buffer,nbytes,'EDIT + ECHO + CRLF')
call OUTPUT ('tt' ,buffer,nbytes, 'CRLF')

if (buffer(1).eq.'S') call TERMINATE ('dis')

go to 10

end

:129

I
! '

! ,

!

.. .I3I I I2lnl9I

I
7.4 Debugging Concurrent Programs

STATUSREPORT and TRACE will provide static and dynamic

[information about interprocess communication in DMS. The TRACE

result is a readable transcript that shows a time-sequential[.
history of information transmission and subroutine execution.

Sometimes the order of items in the transcript may seem peculiar.

This is because in a timesharing system only one process can

{ actually execute at a time while others await their turn. The

TRACE result is sent to the file, TRACE.DMS, where it is saved

Ifor subsequent analysis.

7.5 Running DMS on the VAX

Before running DMS on VAXI, all the programs that are to run

under its control need to be linked to the DNS library. The two

most common ways of doing the link would be either to specify the

DMS library explicitly in the link command or to define a link

library in the LOGIN.COM file. The two alternatives are

(1) LINK PROGRAM, IEHRICH.DMS5IDMS/LIB
(2) DEFINE LNK$LIBRARY [EHRICH.DMS5IDMS

The name of every program running under DNS is mapped

through logical-name translation. If the DMS user wishes to run

two different programs in a process without recoding the program

references in the complex, logical names can be used. If no

logical name exists, the given name is used. Suppose, for

example, that a complex references a program called JUDY. If the

II 30

g user wishes to substitute GEORGE for JUDY, it is only necessary

to type

IASSIGN george judy

[before executing DMS. Of course, in this case the file named

GEORGE could have been renamed JUDY, but that is not always

possible if GEORGE is in another directory.

For each I/O device xx referenced in a program complex, two

things are required for execution of that complex:

1) A logical name xx that translates to the physical I/O
device (like _TTA4:)

2) A driver (or a logical name that translates to a driver)

whose name is XXDRIVER.

The only exception is TT, which by default translates to the

user's login terminal.

Logical names can also be used to run multiple devices with

one driver program. Suppose three identical devices are required

whose drivers are GGDRIVER, and suppose that in the proqram

complex, the devices are referenced by G1, G2, and G3. The

translations for GIDRIVER, G2DRIVER, and G3DRIVER are all set to

be GGDRIVER, and the translations for Gi, G2, and G3 are set as

usual to be the physical terminal line names.

" To run DMS, type

R [EHRICH.DMSS JENTRY

[[31

0

[ENTRY is the name of the central program that supervises the

execution of all the images in its subprocesses. When ENTRY

[runs, the prompt

Ji Welcome to DMS: enter the image name

p" will be typed, and all the user need do is specify the name of

the image that starts the execution of the program complex. In

the case of the FDEMO and FEXEC programs given previously, EDEMO

is all that need be typed. Typing FEXEC will not work since

FEXEC contains no reference to FDEMO that would cause it to begin

execution. Remember also that if any program in the complex

terminates in any way except by a call to DELETE PROCESS, ENTRY

will terminate the entire complex and return to the default

dialogue.

7.6 Interacting with DMS

When a DMS user types AC, ENTRY types the prompt DMS>, which

is a request to the user to issue a command to the DNS system

itself. While in DMS command mode, all processes are active, but

DMS output (ie, output sent through a DMS device process) to the

login terminal is blocked. When A is typed, current output-

requests are terminated, and any pending read-request will be

reissued. If any FORTRAN or PASCAL read-requests to the login

terminal are active, an additional CR will be required to get the

DMS> prompt. Any such read request will subsequently be

reissued.

32

The DMS commands are:

Quit, STOp, Exit, TErminate DMs to leave DMS
TErminate COmplex to reinitiate DMS
TRace ON to turn trace on
TRace OFf to turn trace off
STAtus report to get a status report
<CR> to leave interactive mode

DMS requires certain privileges and quotas. These include

SPRCLM = nproc
BYTLM = 2500 * (nproc + 1)
TMPMBX
GRPNAM
GROUP

where nproc is the maximum number of concurrent programs in the

complex to be run.

Users should use the hibernate system service (sys$hiber)

with caution since any communications to the process mailbox such

as a service request will cause a wakeup to be issued by the AST

that services the mailbox. For applications requiring time

delays, procedures such as DELAY (<100 seconds) or LONGDELAY (>1

second) should be used since they use the sys$setimer service.

These are also found in the DMS library.

33

[IREFERENCES

1. Hartson, H.R., Ehrich, R.W., and Roach, J. The Management of

Dialogue for User/Software Interfaces, (Technical Report).

Jl In preparation.

2. United States Department of Defense. Reference Manual for

the Ada Programming Language. DARPA, July 1980.

3. Brinch Hansen, P., "The Programming Language Concurrent

Pascal," IEEE Transactions on Software Engineering, 1975,

SE-i (2), 199-207.

4. Ritchie, D.M. and Thompson, K. The UNIX Timesharing System,

Comm. ACM, 1974, 17 (7), 365-375.

3

I
L34
II

OFFICE OF NAVAL RESEARCH

Code 442

TECHNICAL REPORTS DISTRIBUTION LIST

OSD Department of the Navy

Capt. Paul R. Chatelier Special Assistant for Marine
Office of the Deputy Under Secretary Corps Matters

of Defense Office of Naval Research
OUSDRE (E&LS) 800 North Quincy Street
Pentagon, Room 3D129 Arlington, VA 22217
Washington, D.C. 20301

Commanding Officer
Department of the Navy ONR Eastern/Central Regional Office

ATTN: Dr. J. Lester
Engineering Psychology Programs 495 Summer Street
Code 442 Boston, MA 02210
Office of Naval Research
800 North Quincy Street Commanding Officer
Arlington, VA 22217 ONR Western Regional Office

ATTN: Dr. E. Gloye
Communication & Computer Technology 1030 East Green Street

Programs Pasadena, CA 91106

Code 240
Office of Naval Research Office of Naval Research
800 North Quincy Street Scientific Liaison Group
Arlington, VA 22217 American Embassy, Room A-407

APO San Francisco, CA 96503
Tactical Development & Evaluation

Support Programs Director
Code 230 Naval Research Laboratory
Office of Naval Research Technical Information Division
800 North Quincy Street Code 2627
Arlington, VA 22217 Washington, D.C. 20375

Manpower, Personnel and Training Dr. Michael Melich

Programs Communications Sciences Division
Code 270 Code 7500
Office of Naval Research Naval Research Laboratory
800 North Quincy Street Washington, D.C. 20375
Arlington, VA 22217

Dr. Louis Chmura
Information Systems Program Code 7592

Code 433 Naval Research Laboratory
Office of Naval Research Washington, D.C. 20375
800 North Quincy Street
Arlington, IYA 22217 Dr. Robert G. Smith

Office of the Chief of Naval

Physiology & Neuro Biology Programs Operations, OP987H
Code 441B Personnel Logistics Plans

Office of Naval Research Washington, D.C. 20350
800 North Qvincy Street
Arlington, VA 22217

I . . --- . J =, -

j Department of the Navy Department of the Navy

Dr. Jerry C. Lamb HQS, U.S. Marine Corps
Combat Control Systems ATTN: CCA40 (MAJOR Pennell)

Naval Underwater Systems Center Washington, D.C. 20380

Newport, RI 02840
Commanding Officer

Naval Training Equipment Center MCTSSA
ATTN: Technical Library Marine Corps Base
Orlando, FL 32813 Camp Pendleton, CA 92055

C3

Human Factors Department Chief, C 3Division
Code N-71 Development Center
Naval Training Equipment Center MCDEC
Orlando, FL 32813 Quantico, VA 22134

Dr. Alfred F. Smode Dr. Robert Wisher
Training Analysis and Evaluation Naval Material Command
Group NAVMAT 0722 - Rm 508

Naval Training Equipment Center 800 North Quincy Steet

Code TAEG Arlington, VA 22217
Orlando, FL 32813

Commander
Dr. Albert Colella Naval Air Systems Command
Combat Control Systems Human Factors Programs
Naval Underwater Systems Center NAVAIR 340F
Newport, RI 02840 Washington, D.C. 20361

K. L. Britton Commander
Code 7503 Naval Air Systems Command
Naval Research Laboratory Crew Station Design
Washington, D.C. 20375 NAVAIR 5313

Washington, D.C. 20361

Dr. Gary Poock
Operations Research Department Mr. Phillip Andrews
Naval Postgraduate School Naval Sea Systems Command
Monterey, CA 93940 NAVSEA 0341

Washington, D.C. 20362
Dean of Research Administration
Naval Postgraduate School Commander
Monterey, CA 93940 Naval Electronics Systems Command

NC #1, Rm 4E56
Mr. Warren Lewis Code 81323
Human Engineering Branch Washington, D.C. 20360

Code 8231
Naval Ocean Systems Center Dr. Arthur Bachrach
San Diego, CA 92152 Behavioral Sciences Department

Naval Medical Research Institute
Dr. A. L. Slafkosky Bethesda, MD 20014
Scientific Advisor
Commandant of the Marine Corps Dr. George Moeller
Code RD-l Human Factors Engineering Branch
Washington, D.C. 20380 Submarine Medical Research Lab.

Naval Submarine Base
Groton, CT 06340

Department of the Navy Department of the Navy

Head Human Factors Section

r Aerospace Psychology Department Systems Engineering Test
Code L5 Directorate
Naval Aerospace Medical Research Lab. U.S. Naval Air Test Center

Pensacola, FL 32508 Patuxent River, MD 20670

Dr. James McGrath Dr. Robert Carroll
CINCLANT FLT HQS Office of the Chief of Naval
Code 04E1 Operations (OP-115)
Norfolk, VA 23511 Washington, D.C. 20350

* Navy Personnel Research and Department of the Army
Development CenterPlanning & Appraisal Division Mr. J. Barber

San Diego, CA 92152 HQS, Department of the Army
DAPE-MBR

Dr. Robert Blanchard Washington, D.C. 20310
Navy Personnel Research and

Development Center Technical Director
Command and Support Systems U.S. Army Research Institute
San Diego, CA 92152 5001 Eisenhower Avenue

Alexandria, VA 22333
LCDR Stephen D. Harris
Human Factors Engineering Division Director, Organizations and
Naval Air Development Center Systems Research Laboratory
Warminster, PA 18974 U.S. Army Research Institute

5001 Eisenhower Avenue
Dr. Julie Hopson Alexandria, VA 22333
Human Factors Engineering Division
Naval Air Development Center Technical Director
Warminster, PA 18974 U.S. Army Human Engineering Labs.

Aberdeen Proving Ground, MD 21005
Mr. Jeffrey Grossman
Human Factors Branch ARI Field Unit-USAREUR
Code 3152 ATTN: Library
Naval Weapons Center C/O ODCSPER
China Lake, CA 93555 HQ USAREUR & 7th Army

APO New York 09403
Human Factors Engineering Branch
Code 1226 Department of the Air Force
Pacific Missile Test Center
Point Mugu, CA 93042 U.S. Air Force Office of Scientific

Research
Mr. J. Williams Life Sciences Directorate, NL

Department of Environmental Bolling Air Force Base
Sciences Washington, D.C. 20332

U.S. Naval Academy
Annapolis, MD 21402 Chief, Systems Engineering Branch

Human Engineering Division
Dean of the Academic Departments USAF AMRL/HES
U.S. Naval Academy Wright-Patterson AFB, OH 45433

Annapolis, MD 21402

I

I
Department of the Air Force Other Government Agencies

Dr. Earl Alluisi Defense Technical Information Center
Chief Scientist Cameron Station, Bldg. 5
AFHRL/CCN Alexandria, VA 22314
Brooks AFB, TX 78235

Dr. Craig Fields
Foreign Addressees Director, System Sciences Office

Defense Advanced Research Projects
North East London Polytechnic Agency
The Charles Myers Library 1400 Wilson Blvd.
Livingstone Road Arlington, VA 22209
Stratford
London El5 2LJ Dr. M. Montemerlo
ENGLAND Human Factors & Simulation

Technology, RTE-6
Professor Dr. Carl Graf Hoyos NASA HQS
Institute for Psychology Washington, D.C. 20546
Technical University
8000 Munich Other Organizations

I Arcisstr 21
FEDERAL REPUBLIC OF GERMANY Dr. Jesse Orlansky

Institute of Defense Analyses
Dr. Kenneth Gardner 1801 N. Beauregard St.
Applied Psychology Unit Alexandria, VA 22311
Admiralty Marine Technology

Establishment Dr. Robert T. Hennessy
Teddington, Middlesex TWll OLN NAS - National Research Council
ENGLAND Committee on Human Factors

2101 Constitution Ave., N.W.
Director, Human Factors Wing Washington, D.C. 20418
Defence & Civil Institute of

Environmental Medicine Dr. Elizabeth Kruesi
Post Office Box 2000 General Electric Company
Downsview, Ontario M3M 3B9 Information Systems Programs
CANADA 1755 Jefferson Davis Highway

Arlington, VA 22202
Dr. A. D. Baddeley
Director, Applied Psychology Unit Mr. Edward M. Connelly
Medical Research Council Performance Measurement
15 Chaucer Road Associates, Inc.
Cambridge, CB2 2EF 410 Pine Street, S.E.
ENGLAND Suite 300

Vienna, VA 22180
Prof. Brian Shackel
Department of Human Sciences Dr. Richard W. Pew
Loughborough University Information Sciences Division
Loughborough, Leics, LEll 3TU Bolt Beranek & Newman, Inc.
ENGLAND 50 Moulton Street

Cambridge, MA 02238

11

